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Abstract. With increasing connectivity between computers, the security of computer networks plays a strategic role in modern
computer systems. In order to enforce high protection levels against threats, a number of software systems have been currently
developed. Intrusion detection systems (IDS) have become an essential component at detecting intruders. In this paper, an
ensemble approach to network intrusion detection based on the fusion of multiple classifiers is proposed. A computational
machine is built to derive optimal parsimonious hybrid model of classifiers in intrusion detection based on the following
classification methods, Naı̈ve Bayes, Support Vector Machine,K-nearest neighbor, and Neural networks. The weighted
voting fusion strategy for intrusion detection is assessedby experiments and its performances compared. The potentialities of
classifiers fusion for the development of effective intrusion detection systems are evaluated and discussed. The experimental
results indicate that hybrid approach effectively generates a more accurate intrusion detection model on detecting both normal
usages and malicious activities. In this paper, we aim to build a robust classifier combination system given a classifier set.
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1. Introduction

With the development of the internet, the information security threat is becoming one of the most
crucial problems. Intrusion detection is the act of detecting actions that attempt to compromise the
confidentiality, integrity or availability of a resource. Despite the effort devoted to carefully designing
intrusion detection systems, network security is very difficult to guarantee, since attacks exploit unknown
weaknesses or bugs, which are always contained in system andapplication software [21]. Intrusion
Detection Systems (IDS) placed inside a protected network,looking for known or potential threats in
network traffic and/or audit data recorded by hosts.

There are generally two distinct approaches in the field of intrusion detection: misuse (signature-based)
detection and anomaly detection [32]. Misuse detection utilizes attack signatures, usually taking the
form of rules, to detect intrusion. It gains a high detectionrate for those well-known intrusions, but
often fails to detect novel intrusions. Anomaly detection,however, tries to build up normal profiles, the
patterns of normal behaviors. Any deviant from the normal profiles is considered as anomalies [8,30].
Because it is difficult to precisely establish the normal profiles, anomaly detection usually suffers from
a higher false positive rate, the possibility that a normal behavior is mistakenly classified as an attack
instance.

There have been plenty of methods in intrusion detection. A statistical method is proposed in [5], where
several “metrics” are paid attention to and their statistical normal profilesare constructed. Enlightened
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by that, many researchers try to build statistical models ofa host system from various aspects [11]. Data
mining is also widely studied and used in intrusion detection [9,33]. It focuses on extracting so-called
“association rules” and “frequent episodes” from voluminous data, which are a specific kind of rules to
describe the network activities. The trade-off between theability to detect new attacks and the ability
to generate a low rate of false alarms is the key point to develop effective IDS. Therefore, the misuse
(signature-based) detection model is currently the most widely used due to its ability to produce very
low false alarm rates at the price of a very limited ability todetect new attacks.

Recently, it is particularly popular to utilize the methodsin machine learning to detect intrusions. The
main motivation in using pattern recognition approaches todevelop advanced IDSs is their generalization
ability, which may support the classification of previouslyunseen intrusions that have no previously
described patterns. In particular, machine learning approaches should allow the detection of the so-
called attack “variants”. The machine learning algorithms are primarily driven by the statistics that can
be derived from the feature vectors [26,28]. One of the most used methods is the Bayesian classification; it
attempts to calculate the probability that an event is an intrusion based upon previous feature frequencies in
attack/non-attack event. Other famous learning algorithms used in intrusion detection systems are support
vector machines, neural networks [10,34],k-nearest neighbor [34] and hidden Markov modeling [20,
30].

In this paper, an approach to intrusion detection in computer networks based on the optimal fusion of
multiple classifiers is proposed. Each member of the classifier ensemble is trained on a distinct feature
representation of patterns, and then the individual results are combined using the weighted voting fusion
strategy. The proposed ensemble machine for intrusion detection presented in this paper groups three
statistical methods and one computational model to improvethe accuracy of our intrusion detection
machine, this will be accomplished by combining different classifiers to achieve the best possible
detection performance:

1. Näıve Bayes, NB
2. Support vector machine, SVM
3. K-nearest neighbor, K-nn
4. Neural networks, NN

These methods are combined with different technique of feature selection: chi-squareχ2, entropy
and mutual information (MI). We have considered three linear fusion methods (voting, averaging and
recursive least square) to combine the statistical methods.

The rest of the paper is organized in the following manner. Section 2 provides a survey of related
works. Section 3 describes the classifications methods usedin our computational machine. Section 4
describes the computational machine implemented in this paper. Section 5 describes the results and
finally, the conclusions and future research needed to improve both the model and the machine described
in Section 6.

2. Related works

The problem of huge network traffic data size and the invisibility of intrusive patterns which normally
are hidden among the irrelevant and redundant features haveposed a great challenge in the domain
of intrusion detection [1]. One way to address this issue is to reduce these input features in order
to disclose the hidden significant features. Thus, an accurate classification can be achieved, besides
identifying significant features that can represent intrusive patterns; the choice of classifier can also
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influence the accuracy and classification of an attack. The literature suggests that hybrid or assembling
multiple classifiers can improve the accuracy of detection [22,34]. Classifier ensembles also known
as committees are aggregations of several classifiers whoseindividual predictions are combined in
some manner (e.g., averaging or voting) to form a final prediction [6,18]. An important advantage
for combining redundant and complementary classifiers is toincrease robustness, accuracy and better
overall generalization in most applications [18,27]. Mukkamala et al. [23] demonstrated the use of
ensemble classifiers gave the best accuracy for each category of attack patterns. Ensemble methods aim
at improving the predictive performance of a given statistical learning or model fitting technique. The
general principle of ensemble methods is to construct a linear combination of some model fitting method,
instead of using a single fit of the method. In designing a classifier, the first step is to carefully construct
different connectional models to achieve best generalization performance for classifiers. Chebrolu et
al. [22] proposed CART-BN approach, where CART performed best for Normal, ProbeandU2R and
the ensemble approach worked best forR2L andDoS. Meanwhile, Abraham and Jain. [2] illustrated that
ensemble Decision Tree was suitable forNormal, LGP forProbe, DoSandR2L and Fuzzy classifier was
for R2L. In their later work, Abraham et al. [3] also demonstrated the ability of their proposed ensemble
structure in modeling light-weight distributed IDS. Meanwhile, Mukkamala et al. [18] proposed three
variants of Neural Networks, SVM and MARS as components in their IDS. This combining approach
has demonstrated better performance when compared to single classifier approach. Giorgio et al. [7]
took a slightly different approach. Their anomaly IDS was based on modular multiple classifier system
where each module was designed for each group of protocols and services. Each module might contain
either individual or combination of different classifiers.The modular architecture would allow putting a
rejection threshold of each module as to optimize the overall attack detection rate given a desired total
false alarm rate for the ensemble. They reported that there was an improvement on attack detection rate
and significant reduction on false alarm.

3. Statistical and computational models overview

3.1. Näıve Bayes classifier

Näıve Bayes classifier uses a probabilistic approach based on applying Bayes’ theorem with strong
(naive) independence assumptions for estimating probabilities of individual feature values, given a class,
from training data and to then allow the use of these probabilities to classify new records. In simple
terms, a naive Bayes classifier assumes that the presence (orabsence) of a particular feature of a class is
unrelated to the presence (or absence) of any other feature.For example, a fruit may be considered to be
an apple if it is red, round, and about 4" in diameter. Even though these features depend on the existence
of the other features, a naive Bayes classifier considers allof these properties to independently contribute
to the probability that this fruit is an apple. Depending on the precise nature of the probability model,
naive Bayes classifiers can be trained very efficiently in a supervised learning setting. In many practical
applications, parameter estimation for naive Bayes modelsuses the method of maximum likelihood; in
other words, one can work with the naive Bayes model without believing in Bayesian probability or
using any Bayesian methods [19].

3.2. Support vector machine

Support vector machines (SVMs) are a set of related supervised learning methods used for classification
and regression. A support vector machine constructs a hyperplane or set of hyperplanes in a high or
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infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively,
a good separation is achieved by the hyperplane that has the largest distance to the nearest training
datapoints of any class (so-called functional margin), since in general the larger the margin the lower the
generalization error of the classifier. Support vector machine constructs a two class classifier function
that divides the feature space into two subspaces, one for each class. Using training set, SVM specifies
in advance which data should cluster together [4].

3.3. K-nearest neighbors

The k-nearest neighbors’ algorithm (k-NN) is a method for classifying objects based on closest training
examples in the feature space.k-NN is a type of instance-based learning, or lazy learning where the
function is only approximated locally and all computation is deferred until classification. The k-nearest
neighbor algorithm is amongst the simplest of all machine learning algorithms: an object is classified by
a majority vote of its neighbors, with the object being assigned to the class most common amongst its k
nearest neighbors (k is a positive integer, typically small). Ifk = 1, then the object is simply assigned
to the class of its nearest neighbor.

3.4. Neural networks

The neural network algorithm that we have considered in thispaper is back propagation. Back-
propagation is the best known training algorithm for neuralnetworks and the most useful. Back-
propagation, or propagation of error, is a common method of teaching artificial neural networks how to
perform a given task. It is a supervised learning method, andis an implementation of the Delta rule. It
requires a teacher that knows, or can calculate, the desiredoutput for any given input. It is most useful
for feed-forward networks. It has lower memory requirements than most algorithms, and usually reaches
an acceptable error level pretty quickly [4,23].

3.5. Combining classifiers

The mantra goal of an optimal hybrid model of classifiers is todetermine the best achievable perfor-
mance for attacks detection within the available classifiers. It has been observed that different classifier
designs offer complementary information about the type of attacks to be detected, which could be
combined to improve the performance of detecting differenttypes of intrusion. A large number of com-
bination methods have been proposed in the literature [6,32]. Actually, there is an extend recognition
of advantages of combining multiple classifiers over the traditional monolithic approach to classifier
design. For instance, Tumer and Ghosh [15,16,24] used simple average of classifier outputs to analyze
the performance improvement of combined classifiers. Combining classifiers using the majority voting
rule was provided by Lam and Suen [18]. Kuncheva [16] compared the classification error at a given
point in the feature space, for majority voting, simple average, and order statistics rules. Kittler and
Alkoot [10] compared the sum and majority vote rules both by experiments and theoretically.

In this paper, the focus on linear combiners and only the weighted voting combination technique
for combining multiple classifiers is addressed. The weighted voting combination method operates as
follows: we obtain classification from different classifiers, but instead of just choosing the most existing
class (majority voting); we assign a weight to each and choose the highest. The weights are used
to adjust the relative importance of each classifier. LetC = {C1, C2, ..., Ck} be a set ofk trained
classifiers, andΩ = {w1, w2, ..., wm} be a set of m class labels. Each classifier gets as its input a
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Fig. 1. Parameters interface.

Fig. 2. Output options interface.
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feature vectorf ∈ ℜn and assigns it to a class label fromΩ, i.e., Ci : ℜn → Ω or equivalently,
Ci (f) ∈ Ω, i = 1...k. The majority vote assignsf to the class label most represented among the
classifier outputs. Let assume that the label outputs of the classifiers are given asm-dimensional binary
vectors[∆i,1,∆i,2, ...,∆i,m] ∈ {0, 1} , i = 1, ..., k where∆i,j = 1 if Ci labelsf in wj, and 0, otherwise,
m
∑

j=1

∆i,j = 1. The plurality vote will pick classwc if

k
∑

i=1

∆i,c =
m

max
j=1

k
∑

j=1

∆i,j (1)

If the classifiers perform differently on each class of the data, it is reasonable to try to provide the more
competent classifiers in defining specific class of the data with more power in making the final decision
for this specific class using the weighted majority vote.

We introduce the weights(αij)i:=1..k,j:=1..m
, whereαij is the weight corresponding to the classifier

Ci and the classj, and rewrite (1) as:
Choose class labelwc if

k
∑

i=1

αic × ∆i,c =
m

max
j=1

k
∑

j=1

α′

ij × ∆i,j (2)

In our machine, we have formalized the weights as following:if we consider(Eij)i:=1..k,j:=1..m
where

Eij is the harmony error corresponding to the classifierCi and the classj, α′

ij are the normalized
weightsαij defined as:

αij = − log

(

Eij

1 − Eij

)

(3)

4. Computational machine description

The main aim of this computational machine is to create an optimal hybrid model of classifiers for
intrusion detection to segregate between attack and non-attack events. The optimal model for classification
is data dependent [24]. The users have to specify the parameters for the computational machine; these
parameters include the guidance parameterλ, the significance levelα, the combination method and the
number of classifiers to be considered. The optimality criteria considered is based on the harmonic error
Eλ = 1–Fλ, where Fλ is Van Rijbergen’s F-measure of accuracy [6], defined as a combination of both
recall (R) and precision (P):

Fλ =
1

λR−1 + (1 − λ) P−1
(4)

The user then uploads the training data and submits his preferences to obtain the optimal parsimonious
hybrid model for his data. Figure 1 shows the parameter interface where the user enters all the required
information. After then, the user uploads the data to be detected, at that time an output interface appears
so the user can customize the output file. Figure 2 shows all the possible options.

During the whole process, the computational machine interacts with the user through user interfaces
that have been meticulously designed and compounded with a detailed help explaining all steps and terms
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Fig. 3. Intrusion detection computational model.

in the computational machine. The statistical analysis is done using S-Plus and the output is generated
as a text file [24].

The network intrusion detection computational machine canbe formulated as shown in Fig. 3. It
includes the different steps for training data: features selection, data transformation and finally data
analysis in S-Plus software. The output is the best combination model that will be used to classify new
data.

5. Experiments

We considered a set of KDD 1999 cup intrusion detection data [14] consisting of four classes: three
major categories of attack: Denial-of-Service attacks (DOS: deny legitimate requests to the system), user-
to-root attacks (U2R: unauthorized access to local administrator or root), and Probe, attacks generated
by gathering information, and the normal class. We have trained three classifiers: Naı̈ve Bayes (NB),
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Fig. 4. Intrusion detection error for majority vote and weighted vote fusion methods.
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Fig. 5. Intrusion detection error for different data sets.

K-Nearest Neighbor (k-NN), and Neural Network (NN), then built a multi-classifierbased on the
methodology shown in Section 3.5. Figure 4 shows the performance comparison of the two methods of
combining the classifiers, majority vote and weighted vote.We note that for the each class, the weighted
average performed better than a simple majority vote. Figure 5 shows the performance of each classifier
on each specific class. It identifies the best classifier for each attack category: combined classifier
NB-NN for Normal, NB-KNN for DOS, combination of all classifiers for U2R, and NN for Probe.

6. Conclusion

In this paper, a computational machine is built to derive optimal parsimonious hybrid model of
classifiers in intrusion detection based on the following classification methods, Naı̈ve Bayes, Support
Vector Machine,K-nearest neighbor, and Neural networks. The weighted voting fusion strategy for
intrusion detection is assessed by experiments and its performances compared. The potentialities of
classifiers fusion for the developmentof effective intrusion detection systems are evaluated and discussed.
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The experimental results indicate that hybrid approach effectively generates a more accurate intrusion
detection model on detecting both normal usages and malicious activities.
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